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Abstract. We overview recent progress on small-scale dynamo and apply the results to the
the problem of nonlinear shock acceleration in which particle mean free paths in front of
the shock are greatly reduced due to magnetic fields in the shock precursor which are gen-
erated through small-scale dynamo in the density gradient’s-induced turbulence. Previous
DSA models considered magnetic fields amplified through cosmic ray streaming instabili-
ties either by way of individual particles scattering in the magnetic fields, or by macroscopic
electric currents associated with large-scale cosmic ray streaming. The small-scale dynamo
mechanism provides fast growth and is very generic. For supernovae shocks this mechanism
is estimated to generate upstream magnetic fields that are sufficient for accelerating cosmic
rays up to around 1016 eV.
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1. Introduction

Diffuse γ-ray emission from the Galaxy, de-
tected by EGRET, Fermi and other missions
has been explained by interaction of galactic
cosmic rays (CRs) with interstellar medium,
molecular clouds and interstellar magnetic
fields. Pion production by protons and nu-
clei and inverse Compton (IC), bremsstrahlung
and synchrotron emission by electrons and
positrons all contribute to observed γ-ray emis-
sion. Cosmic rays, relativistic charged parti-
cles with energies 108 − 1022eV, constitute
an essential part of astrophysical systems (see
Schlickeiser 2003). In galaxies they provide
pressure and energy densities comparable to
those of magnetic fields and thermal gas. In
very dense regions, such as the cores of molec-
ular clouds or accretion disks they are the only
source of ionization that that must be present
to allow interaction of magnetic field and the

fluid. The origin of CRs has been a subject
of debate from the beginning of research in
the field (Ginzburg & Syrovatsky 1964). It
could be argued from energetic constraints that
galactic CRs at least up to the “knee” in the
spectrum ( 1015eV) are most likely generated
by supernova shocks.

However, the upstream magnetic fields of
the ISM, 5µG, are too weak to provide an effi-
cient acceleration of the cosmic rays with en-
ergies as high as 1015 GeV. Such PeV cosmic
rays will have long mean free paths and have a
high probability of escaping, after which they
are not subject to further acceleration. This
poses a serious problem for the shock accel-
eration of galactic CRs.

To overcome the problem one can argue
that the magnetic field in the preshock re-
gion can be much stronger than its inter-
stellar value and that the free energy avail-
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able for the shock is sufficient to generate
much larger fields (Volk, Drury & McKenzie,
1984). The magnetic field generation, if pur-
sued through streaming instability, leads natu-
rally to a highly nonlinear stage of the stream-
ing instability where δB � B0. The orig-
inal classical treatment of the instability is
not applicable in that limit. What happens in
the non-linear regime has been a subject of
much discussion in recent years (e.g., Lucek
& Bell 2000, Diamond & Malkov 2007, Blasi
& Amato 2008, Riquelme & Spitkovsky 2009).
The current driven instability proposed by Bell
(2004) has moved recently to the center of this
debate. The driving electric current of the in-
stability comes from drift (streaming) of the
escaping CRs. The compensating return cur-
rent of the background plasma leads to a trans-
verse force on the background plasma that can
amplify transverse perturbations in the mag-
netic field. Numerical simulations suggest that
the initial field strength can grow substantially,
leading in the nonlinear form to disordered
fields with coherence lengths that depend on
field strength. In what follows, we argue that
there is a process that can provide fast mag-
netic field generation. It provides sufficiently
strong magnetic field without appealing to ei-
ther classical streaming instabilities or their
modifications. The CR pressure gradient is the
dynamical agent that forms the shock precur-
sor and also drives field amplification.

We assume that the CR pressure is a
smooth function applied to the fluid, while the
magnetic field is generated by purely fluid non-
linear mechanisms. The magnetic field, in turn,
scatter CRs. The fluid is stirred within the pre-
cursor on large, precursor-sized, scales by the
combination of ISM density inhomogeneities
and CR pressure. In particular, the vorticity
is generated directly by ∇ρIS M × ∇PCR baro-
clinic term, as CR pressure is not barotropic
with respect to the ISM density (and not even
a function of this density). Although we con-
sider the CR pressure applied to the inflowing
fluid homogeneous in the direction along the
shock, the acceleration of the fluid element is
highly inhomogeneous due to the density in-
homogeneity of the fluid. This drives precursor

turbulence. Magnetic energy is generated on
intermediate scales by a small-scale dynamo.

2. Small-scale dynamo

In this paper we only consider turbulence hy-
drodynamically amplified within the precur-
sor. We do not consider post-shock turbulence,
which is a fairly well-known and better ex-
plored phenomenon that exists even in pure hy-
drodynamics without a CR precursor (see, e.g.,
Giacalone & Jokipii, 2007).

As inhomogeneous fluid flows into the pre-
cursor with speed u0 it is gradually decelerated
by the CR pressure gradient until it reaches the
speed u1 at the dissipative shock front. This
deceleration could create vortical perturbations
of velocity of the order u0 − u1, a difference
between ballistic velocity of the high-density
region and full deceleration of the low density
regions. It is due to the baroclinic term ∇ρIS M×
∇PCR that breaks Kelvin circulation theorem
in every sub-volume of the fluid. Cosmic ray
pressure PCR provides an external (non-fluid)
force ∇PCR which is not barotropic with re-
spect to the plasma density ρIS M .

Three-dimensional solenoidal flows can
amplify magnetic fields through the stretch-
fold mechanism. We will consider a so-called
generic small-scale dynamo (turbulent) in
which magnetic fields are amplified by initially
weakly magnetized hydrodynamic turbulence
with an energy-containing (outer) scale of L.
“Small-scale” means that the scales of mag-
netic fields we are interested in are smaller than
L. The problem of the so-called mean-field
dynamo, when large-scale magnetic fields are
generated by small-scale motions is not con-
sidered here, because the mean-field dynamo is
fairly slow (see Vishniac & Cho 2001), while
inside the shock precursor the time for the am-
plification is rather limited, since all perturba-
tions are quickly advected to the dissipative
shock. The small-scale dynamo has three prin-
cipal stages – a kinematic stage, when mag-
netic energy grows exponentially, a linear stage
and a saturation stage (see Cho et al, 2009).

For astrophysical applications the kine-
matic dynamo is irrelevant, since its charac-
teristic saturation timescale is of the order of
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Fig. 1. Magnetic spectrum (dashed), generated
by small-scale dynamo induced by solenoidal
velocity motions (solid). L∗ is an equipartition
scale of magnetic and kinetic motions. Upper
panel: magnetic and velocity fields from simu-
lations (Cho et al 2009). Dashed lines are mag-
netic spectra at different times.

an eddy turnover time of the smallest eddies,
which is a tiny number compared to outer
timescales. For our purposes we can always as-
sume that the kinematic dynamo is saturated
and the dynamo is in the linear stage.

In the linear stage magnetic energy grows
linearly with time as

1
8π

dB2

dt
= Adε, (1)

where ε is the energy transfer rate of the
turbulence, which can be estimated as ε =
ρu3

s/L, and Ad can be called an efficiency of
the small-scale dynamo. A typical spectrum of
the velocity and the magnetic field in the linear
stage is presented on Fig. 1. At each particu-
lar time the magnetic field reaches equiparti-
tion with the turbulent velocity field on some
scale L∗. This scale grows with time. On scales
smaller than L∗ magnetic and velocity pertur-
bations form an MHD turbulent cascade with
a fairly steep spectrum. On scales larger than
L∗, the magnetic field has a fairly shallow spec-
trum and velocity has a Kolmogorov spectrum.

The law of linear growth can be under-
stood as follows. The main cascade of energy
is down-scale, but it is converted from a purely

velocity cascade to an MHD cascade at a scale
L∗. One can imagine that part of this energy
cascades up (an inverse cascade) in the form
of magnetic energy. Let us call this fraction
Ad. In principle, Ad can depend on scale, i.e.,
Ad(L∗). However, by an argument similar to
Kolmogorov’s, if the inverse cascade mecha-
nism is purely nonlinear, then, in the middle of
the inertial interval there is no designated scale
and, therefore, there is no dimensionless com-
bination involving L∗. Therefore, the function
Ad(L∗) has to be constant. This gives a linear
growth of energy. The linear growth can also
be obtained if we assume that it takes several
turnover times to reach equipartition on each
successive step to larger and larger L∗. A lin-
ear growth rate has been measured in Cho et
al. (2009) as being close to Ad ≈ 0.06 which is
the quantity we will use in this paper.

The shallow part of the magnetic spectrum
between L and L∗ normally has a slope α be-
tween 0 and −1, as observed in simulations. We
will need these constraints later, when we de-
scribe a model of particle scattering. We par-
ticularly favor a model with α = −1/2. This
model assumes that while magnetic fields on a
scale L∗ are generated by random eddies at the
same scale L∗ and contain most of the mag-
netic field energy, the larger scale fields come
from equipartition of magnetic tension on scale
l > L∗. This can be estimated as δB2(l)/l, while
the averaged magnetic tension comes from a
number N = (l/L∗)3 of independent random
eddies on scale L∗. This will give scalings
δB(l) ∼ l−1/4 and

EB(k)k = δB2(k) ∼ k1/2. (2)

When L∗ approaches L, the small-scale dy-
namo enters the saturation stage in which the
magnetic field grows more slowly than in the
previous linear stage. The saturation value of
magnetic energy depends slightly on the level
of the mean magnetic field (Cho et al. 2009). In
our case the mean magnetic field can be con-
sidered negligible, as the typical Alfvén veloc-
ity of warm ISM (∼ 12km/s) is much smaller
than the shock speed and associated turbulent
speeds. For the purpose of this paper, how-
ever, we won’t need a saturation stage, since
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we have limited time available for amplifica-
tion, τc, which is normally not enough to reach
the saturation stage.

From the linear stage growth we derive
quantities δB∗ = δB(L∗, x1) and L∗(x1) that we
will need in the next section:

δB2(L∗, x1) = 8πAdετ(x1); (3)

δB∗√
4πρ

= us

(
L∗(x1)

L

)1/3

; (4)

τ(x1) =

∫ x0

x1

dx
u(x)

; (5)

L∗(x1) = (2Adusτ(x1))3/2L−1/2. (6)

3. Measurements of scattering in
DNS of MHD turbulence

It was argued in Yan & Lazarian (2002, 2004)
that fast mode should dominate particle scatter-
ing in MHD turbulence. Fast mode, however, is
often damped. In particular, strong TTD damp-
ing is expected in low-collisional enviroments,
such as hot ISM, which is often a medium in
which strong supernova shocks propagate. In
this case fast mode will be effectively absent.
It is, however, interesting to check the pre-
diction of so-called Quasilinear Theory (QLT,
see, e.g., Schlickeiser 2002) that scattering by
incompressible components, Alfven and slow
waves is basically absent (Chandran 2000).

We traced particle trajectories in elec-
tromagnetic fields obtained in direct three-
dimensional simulations of MHD turbulence.
We used driven simulations described in more
detail in Beresnyak & Lazarian 2009(a,b). The
electric field in the laboratory frame was ob-
tained through E = −[v × B]/c, assuming typ-
ical ISM value of vA/c = 10−5. The particles
were injected randomly through the datacube
and the trajectories for the relativistic equa-
tions of motion were traced by hybrid Runge-
Kutta quality-controlled ODE solver, assuming
periodic boundaries for particles and fields.

Dµµ scattering property was measured in
the tracing experiments where an ensemble of
particles with the same rL (energy) and a par-
ticular µ0 were traced by a certain time. This

Fig. 2. Measured scattering coefficient Dµµ/Ω
(µ0 = 0.71) vs Larmor radius rL in cube size
units (solid line). For comparison, we plot var-
ious theoretical predictions: QLT prediction for
Alfven and slow mode (dashed); QLT predic-
tion for fast mode (dot-dashed); hypothetical
Bohm scattering or maximally efficient scatter-
ing (dotted).

time was determined by the condition that the
RMS of deviations of µ is small (i.e. 0.1-0.01).
Then the curves of the ensemble-averaged 〈(µ−
µ0)2〉 were fitted with a linear curve.

As we see from Fig. 2 the measurement
of scattering frequency is incompatible with
QLT. The scattering frequency normalized to
the gyration frequency is proportional to the
Larmor radius i.e. it is constant with energy (as
ΩrL = v ≈ c). It would be reasonable to assume
then that particles of all energies scatter on
the same objects, magnetic bottles, formed by
large scale slow-mode perturbations. The same
result could be obtained from nonlinear scatter-
ing theory (Yan & Lazarian 2008), taking into
account ∆µ ∼ µ in strong turbulence. At larger
energies scattering becomes less efficient i.e.
high energy particles “feel” less mirrors. This
transition happen at around rL/L ≈ 0.1.
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4. Particle scattering and
second-order acceleration

As it turns out, there are three different regimes
of particle scattering, depending on the particle
energy, E, (see Fig. 3). The magnetic spectrum,
described in Fig. 1, corresponds to the char-
acteristic magnetic field on a particular scale
δB(l) ∼ √E(k)k, which increases with decreas-
ing scale as l−α/2−1/2 = l−1/4 for α = −1/2 from
L until L∗ and decreases with scale as l1/3 for l
smaller than L∗.

If the particle energy is sufficiently low,
the particle will, to the first approximation, gy-
rate around a mean field. Otherwise, its trajec-
tory will be stochastic. In particular, if E <<
eδB(L∗)L∗, the particle will be gyrating along
the mean field of δB∗ = δB(L∗) with Larmor
radius of rg2 = E/eδB∗. We will refer to these
particles as low-energy and designate low ener-
gies as region (1) in Fig. 3. For low energy par-
ticles the scattering frequencies and accelera-
tion will be determined by a turbulence-based
formulae with turbulence outer scale of L∗ (the
scale with largest magnetic field). We will con-
sider this case in detail in the next section.

4.1. High energy particle scattering

If the energy of the particle is higher than
eδB(L∗)L∗, there is no gyration and the parti-
cle’s trajectory is fairly stochastic. This is due
to the fact that for this particle, the vector mag-
netic field will be partially averaged out on
larger scales (so that δBl ∼ l−1/4). Let us as-
sume that such a particle experience a Bohm
scattering and have a mean free path of

rg1 = (E/eδB∗)
2

1−α (L∗)−
1+α
1−α

= (E/eδB∗)4/3(L∗)−1/3 > L∗. (7)

Indeed, (a) – on such a scale, a particle will
be deflected by an angle of the order of unity;
(b) – the deflection from larger scale field will
be smaller (if l2 > rg1, then the deflection an-
gle eδB(l2)rg1/E < 1); (c) – the deflection from
some smaller scale l1 is also smaller (it is a
random walk with rg1/l1 steps), and the deflec-
tion angle is eδB(l1)l1/2r1/2

g1 /E < 1. Assuming

E = pc from here on, the Dxx and Dpp for such
particles will be determined by velocity pertur-
bations on scale rg1, i.e., usr

1/3
g1 L−1/3; thus,

Dxx = (E/eδB∗)4/3(L∗)−1/3c, (8)
Dpp = p2u2

sr−1/3
g1 L−2/3/c ∝ E14/9 (9)

Finally, for very high energy particles

E >> eδB∗L
1−α

2 (L∗)
1+α

2 = eδB∗L3/4(L∗)1/4, (10)

the trajectory will be a random walk with
small deflections from scale L and an effective
mean free path of E2/e2δB2

LL. The Dpp will be
energy independent, as it will be set by outer
scale velocity perturbations of us. So,

Dxx = E2c/e2δB2
LL, (11)

Dpp = (eδBL)2Lu2
s/c

3. (12)

4.2. Low energy particle scattering

For the purpose of this paper we will con-
dider two simple, contrasting cases. In the first
case, we will assume that the fast mode is fully
damped and that only solenoidal modes sur-
vive on scales of L∗ and smaller. This case was
considered in the previous section. We can ne-
glect QLT contributions from the Alfvénic and
slow modes as they are very small. On the other
hand, there are strong perturbations of the mag-
netic field on the outer scale of L∗. In this case
particles, regardless of energy (provided that
E << eδB(L∗)L∗) are going to be reflected by
magnetic bottles on scale L∗ and Dxx will be in-
dependent of energy and equal to L∗c, and Dpp
will be determined by the speed of the bottles:

Dxx = L∗c, (13)
Dpp = p2u2

s(L∗)−1/3L−2/3/c. (14)

In the second case, we will assume that the
fast mode is not damped and that the scatter-
ing and second-order acceleration are due to
the fast mode. If we assume that the amplitude
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Fig. 3. Diffusion coefficients Dxx and Dpp vs
energy. There are three regimes: (1), a low-
energy scattering, which depends on the prop-
erties of small-scale MHD turbulence, two
cases where fast modes are present (dashed)
and absent (dotted) are shown; (2), the strong
scattering, where particles are scattered effi-
ciently by the large magnetic fields, generated
by small-scale dynamo; (3), at high-energies
particles are only slightly refracted.

of the fast mode is approximately in equipar-
tition with other modes on the outer scale of
sub-Alfvénic turbulence, L∗, we will obtain:

Dxx = cr1/2
g2 (L∗)1/2, (15)

Dpp = p2u2
s(L∗)1/6L−2/3r−1/2

g2 . (16)

Here we have used so-called acoustic tur-
bulence scaling δB ∼ l1/4 for the isotropic fast
mode, as in Cho & Lazarian (2002). The shock
precursor with it’s high density of CRs could
be affected by collective effects where com-
pressions of magnetic field induce the gyrores-
onance instability as discussed in Lazarian &
Beresnyak (2006). We skip discussion on this
complex subject here.

5. Acceleration

The self-consistent treatment of the flow pro-
file and acceleration of particles using expres-
sions from above will be presented in a fu-
ture publication. The scattering coefficients as-
sume that efficient scattering will be experi-
enced by particles with energies up to E2−3 =
eδB∗L∗1/4L3/4 (see Fig. 3). This energy can be
estimated taking usτ ≈ L, us ≈ 104km/s and
L ≈ 1pc and E2−3 ≈ 3×1017 eV. As this energy
corresponds to a mean free path of the order of
L and the acceleration efficiency is smaller by a
factor of us/c (Hillas, 1984) the maximum ac-
celeration energy will be around 1016 eV. The
higher energy particles will be scattered rela-
tively less efficiently and will form a steep cut-
off spectrum.
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